skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Truttmann, T_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We combine state-of-the-art oxide epitaxial growth by hybrid molecular beam epitaxy with transport, x-ray photoemission, and surface diffraction, along with classical and first-principles quantum mechanical modeling to investigate the nuances of insulating layer formation in otherwise high-mobility homoepitaxial n-SrTiO3(001) films. Our analysis points to charge immobilization at the buried n-SrTiO3/undoped SrTiO3(001) interface as well as within the surface contamination layer resulting from air exposure as the drivers of electronic dead-layer formation. As Fermi level equilibration occurs at the surface and the buried interface, charge trapping reduces the sheet carrier density (n2D) and renders the n-STO film insulating if n2D falls below the critical value for the metal-to-insulator transition. 
    more » « less